Hardware-Accelerated VSLAM and Navigation with Isaac ROS
Overview
This lesson explores Isaac ROS for real-time, hardware-accelerated Visual SLAM (VSLAM) and navigation. Learn to use these powerful components for robot localization, mapping, and environmental understanding, leveraging NVIDIA's hardware acceleration capabilities.
Learning Objectives
By the end of this lesson, you should be able to:
- Understand the architecture and components of Isaac ROS
- Set up and configure Isaac ROS VSLAM pipelines
- Implement hardware-accelerated visual SLAM for robot localization
- Configure navigation stacks with Isaac ROS
- Integrate Isaac ROS with Isaac Sim for simulation
- Optimize VSLAM and navigation performance using GPU acceleration
- Troubleshoot common VSLAM and navigation issues
Introduction to Isaac ROS
What is Isaac ROS?
Isaac ROS is NVIDIA's collection of accelerated perception and navigation packages for robotics. It includes:
- Hardware-accelerated perception: Optimized for NVIDIA GPUs
- Modular design: Easy to integrate and extend
- ROS 2 native: Full compatibility with ROS 2 ecosystem
- Real-time performance: Designed for high-frequency applications
Isaac ROS Architecture
�������������������������������������������������������������
Isaac ROS Framework
�������������������������������������������������������������$
����������������� ����������������� ��������������
Isaac ROS Isaac ROS Isaac ROS
Perception Navigation Utilities
Components Components Components
" Stereo Dense " Nav2 " NITROS
Disparity " Path Planning " Message
" VSLAM " Localization Conversion
" Optical Flow " Mapping " Image
" Detection " Control Pipelines
����������������� ����������������� ��������������
�������������������������������������������������������������$
���������������������������������������������������������
NVIDIA Hardware Acceleration Layer
" Tensor Cores (RTX/RTX Ada/RTX Ada Pro)
" CUDA Cores
" Optical Flow Accelerator
" Video Encoder/Decoder Units
���������������������������������������������������������
�������������������������������������������������������������
Key Components
- NITROS (NVIDIA Integrated Robotics Object Store): High-speed transport for robotics data
- VSLAM: Visual Simultaneous Localization and Mapping
- Stereo Dense Disparity: Depth estimation from stereo cameras
- Optical Flow: Motion estimation and tracking
- Detection & Segmentation: Object detection and semantic segmentation
Isaac ROS VSLAM (Visual SLAM)
Understanding VSLAM
Visual SLAM (Simultaneous Localization and Mapping) uses visual sensors to:
- Localize: Estimate the robot's position and orientation
- Map: Build a representation of the environment
- Navigate: Plan paths through the environment
Isaac ROS VSLAM Architecture
Camera Input
�
�������������
Image
Rectifier
�������������
�
�������������
Feature
Extractor �� GPU Acceleration
�������������
�
�������������
Feature
Matcher �� Tensor Cores
�������������
�
�������������
Pose
Estimator �� CUDA Cores
�������������
�
�������������
Map
Builder �� Memory Pool
�������������
�
Localized Robot + Environmental Map
Installing Isaac ROS
# Add NVIDIA package repositories
sudo apt update
sudo apt install -y curl gnupg
curl -sSL https://repo.download.nvidia.com/client/install.pub | sudo apt-key add -
sudo tee /etc/apt/sources.list.d/nvidia-l4t-apt-source.list << END
deb https://repo.download.nvidia.com/jetson/common r35.4 main
deb https://repo.download.nvidia.com/jetson/t186 r35.4 main
END
# Install Isaac ROS packages
sudo apt update
sudo apt install -y nvidia-isaac-ros
sudo apt install -y nvidia-isaac-ros-vslam
sudo apt install -y nvidia-isaac-ros-navigation
Setting Up VSLAM Pipeline
Basic VSLAM Configuration
# config/vslam_config.yaml
isaac_ros_visual_slam_node:
ros__parameters:
# Input camera configuration
enable_rectified_pose: true
rectified_frame_id: "camera_aligned_rect"
# Map and tracking parameters
enable_occupancy_map: true
occupancy_map_resolution: 0.05 # meters per cell
occupancy_map_size_x: 20.0 # map size in meters
occupancy_map_size_y: 20.0
# Feature tracking
feature_tracker_type: 1 # 0: KLT, 1: NVPIP
enable_debug_mode: false
# Loop closure
enable_localization_n_mapping: true
enable_loop_closure: true
# Hardware acceleration
enable_image_transfer: true
enable_preintegration_constant_test: true
Launch File for VSLAM
<!-- launch/vslam_pipeline.launch.py -->
from launch import LaunchDescription
from launch.actions import DeclareLaunchArgument
from launch.substitutions import LaunchConfiguration
from launch_ros.actions import ComposableNodeContainer
from launch_ros.descriptions import ComposableNode
def generate_launch_description():
# Declare launch arguments
namespace_arg = DeclareLaunchArgument(
'namespace',
default_value='',
description='Namespace for the nodes'
)
# Get launch configuration
namespace = LaunchConfiguration('namespace')
# Create composable node container
container = ComposableNodeContainer(
name='visual_slam_container',
namespace=namespace,
package='rclcpp_components',
executable='component_container_mt',
composable_node_descriptions=[
# Feature tracker node
ComposableNode(
package='isaac_ros_visual_slam',
plugin='nvidia::isaac_ros::visual_slam::FeatureTrackerNode',
name='feature_tracker_node',
parameters=[{
'input_width': 640,
'input_height': 480,
'enable_rectified_pose': True,
'rectified_frame_id': 'camera_aligned_rect',
}],
remappings=[
('/visual_slam/image', '/camera/color/image_raw'),
('/visual_slam/camera_info', '/camera/color/camera_info'),
]
),
# Visual SLAM node
ComposableNode(
package='isaac_ros_visual_slam',
plugin='nvidia::isaac_ros::visual_slam::VisualSlamNode',
name='visual_slam_node',
parameters=[{
'enable_occupancy_map': True,
'occupancy_map_resolution': 0.05,
'enable_image_transfer': True,
'enable_localization_n_mapping': True,
'enable_loop_closure': True,
}],
remappings=[
('/visual_slam/imu', '/imu/data'),
('/visual_slam/feature_tracks', 'feature_tracker/feature_tracks'),
('/visual_slam/optimized_odometry', 'visual_slam/optimized_odometry'),
]
),
# Map to odom broadcaster
ComposableNode(
package='tf2_ros',
plugin='tf2_ros::StaticTransformBroadcasterNode',
name='map_to_odom_broadcaster',
parameters=[{
'frame_id': 'map',
'child_frame_id': 'odom',
}]
),
],
output='screen'
)
return LaunchDescription([
namespace_arg,
container
])
Implementing Hardware-Accelerated VSLAM
Optimized VSLAM with GPU Acceleration
# Example: Optimized VSLAM node with hardware acceleration
import rclpy
from rclpy.node import Node
from sensor_msgs.msg import Image, CameraInfo, Imu
from nav_msgs.msg import Odometry
from geometry_msgs.msg import PoseStamped
from cv_bridge import CvBridge
import numpy as np
import torch
import cuda # NVIDIA CUDA bindings
class OptimizedVSLAMNode(Node):
def __init__(self):
super().__init__('optimized_vslam_node')
# Initialize CV bridge
self.cv_bridge = CvBridge()
# Check for GPU availability
self.gpu_available = torch.cuda.is_available()
if self.gpu_available:
self.device = torch.device('cuda')
self.get_logger().info('Using GPU for VSLAM acceleration')
else:
self.device = torch.device('cpu')
self.get_logger().warning('GPU not available, using CPU for VSLAM')
# Initialize feature detector with GPU acceleration
self.setup_gpu_feature_detector()
# Set up subscriptions
self.image_sub = self.create_subscription(
Image,
'/camera/color/image_raw',
self.image_callback,
10
)
self.camera_info_sub = self.create_subscription(
CameraInfo,
'/camera/color/camera_info',
self.camera_info_callback,
10
)
self.imu_sub = self.create_subscription(
Imu,
'/imu/data',
self.imu_callback,
10
)
# Set up publishers
self.odom_pub = self.create_publisher(
Odometry,
'/visual_slam/odometry',
10
)
self.pose_pub = self.create_publisher(
PoseStamped,
'/visual_slam/pose',
10
)
# Internal state
self.current_pose = np.eye(4) # 4x4 transformation matrix
self.keyframes = []
self.map_points = []
# Processing parameters
self.processing_rate = 30.0 # Hz
self.timer = self.create_timer(1.0/self.processing_rate, self.process_vslam)
self.get_logger().info('Optimized VSLAM node initialized')
def setup_gpu_feature_detector(self):
"""Initialize GPU-accelerated feature detection"""
if self.gpu_available:
# Use NVIDIA's optimized feature detection
# This is a conceptual example - actual implementation uses Isaac ROS packages
self.feature_detector = torch.nn.Module() # Placeholder
# Initialize CUDA streams for parallel processing
self.cuda_stream = torch.cuda.Stream(device=self.device)
# Allocate pinned memory for faster host-device transfers
self.pinned_memory_pool = torch.cuda.caching_allocator_alloc
else:
# Fallback to CPU feature detection
import cv2
self.feature_detector = cv2.ORB_create(nfeatures=1000)
def image_callback(self, msg):
"""Process incoming camera images"""
try:
# Convert ROS image to OpenCV format
cv_image = self.cv_bridge.imgmsg_to_cv2(msg, desired_encoding='passthrough')
# Store image for processing
with torch.cuda.stream(self.cuda_stream) if self.gpu_available else nullcontext():
if self.gpu_available:
# Transfer image to GPU
gpu_image = torch.from_numpy(cv_image).to(self.device)
# Extract features using GPU
features = self.extract_features_gpu(gpu_image)
else:
# CPU fallback
features = self.extract_features_cpu(cv_image)
# Store features for SLAM processing
self.store_features_for_processing(msg.header.stamp, features, cv_image)
except Exception as e:
self.get_logger().error(f'Error processing image: {str(e)}')
def extract_features_gpu(self, gpu_image):
"""Extract features using GPU acceleration"""
# This is a conceptual example
# Actual Isaac ROS VSLAM uses optimized CUDA kernels
with torch.no_grad():
# Process image on GPU
processed_features = self.feature_detector(gpu_image)
return processed_features.cpu().numpy()
def extract_features_cpu(self, cv_image):
"""Extract features using CPU (fallback)"""
import cv2
keypoints, descriptors = self.feature_detector.detectAndCompute(cv_image, None)
return {'keypoints': keypoints, 'descriptors': descriptors}
def imu_callback(self, msg):
"""Process IMU data for pose estimation"""
# Store IMU data for fusion with visual odometry
self.last_imu_data = {
'orientation': [msg.orientation.x, msg.orientation.y, msg.orientation.z, msg.orientation.w],
'angular_velocity': [msg.angular_velocity.x, msg.angular_velocity.y, msg.angular_velocity.z],
'linear_acceleration': [msg.linear_acceleration.x, msg.linear_acceleration.y, msg.linear_acceleration.z]
}
def camera_info_callback(self, msg):
"""Process camera calibration information"""
self.camera_matrix = np.array(msg.k).reshape(3, 3)
self.distortion_coeffs = np.array(msg.d)
def process_vslam(self):
"""Main VSLAM processing loop"""
# This is where the actual SLAM algorithm runs
# In practice, this would use Isaac ROS's optimized VSLAM implementation
# Step 1: Track features between frames
if hasattr(self, 'last_processed_image'):
current_features = self.get_current_features()
last_features = self.get_last_features()
# Match features using GPU acceleration
matches = self.match_features_gpu(last_features, current_features)
# Estimate motion
motion_estimate = self.estimate_motion(matches)
# Update pose
self.update_pose(motion_estimate)
# Step 2: Optimize pose graph (loop closure)
if self.should_run_optimization():
self.optimize_pose_graph()
# Step 3: Update map
self.update_map()
# Step 4: Publish results
self.publish_results()
def match_features_gpu(self, features1, features2):
"""Match features using GPU acceleration"""
if self.gpu_available:
# Use GPU for feature matching
with torch.cuda.stream(self.cuda_stream):
# Convert features to tensors
feats1_tensor = torch.tensor(features1['descriptors'], device=self.device)
feats2_tensor = torch.tensor(features2['descriptors'], device=self.device)
# Perform matching on GPU
matches = self.gpu_feature_matcher(feats1_tensor, feats2_tensor)
return matches.cpu().numpy()
else:
# CPU fallback
import cv2
bf = cv2.BFMatcher()
matches = bf.knnMatch(features1['descriptors'], features2['descriptors'], k=2)
return matches
def estimate_motion(self, matches):
"""Estimate camera motion from feature matches"""
# Implementation depends on the specific algorithm
# Would use GPU-accelerated PnP or Essential Matrix computation in Isaac ROS
pass
def update_pose(self, motion_estimate):
"""Update current robot pose"""
# Apply motion estimate to current pose
self.current_pose = self.current_pose @ motion_estimate
def optimize_pose_graph(self):
"""Perform pose graph optimization for loop closure"""
# This would use Isaac ROS's optimized pose graph optimization
pass
def update_map(self):
"""Update the environmental map"""
# Add new map points or refine existing ones
pass
def publish_results(self):
"""Publish odometry and pose results"""
# Create and publish odometry message
odom_msg = Odometry()
odom_msg.header.stamp = self.get_clock().now().to_msg()
odom_msg.header.frame_id = 'map'
odom_msg.child_frame_id = 'base_link'
# Convert pose to ROS format
position = self.current_pose[:3, 3]
rotation_matrix = self.current_pose[:3, :3]
# Convert rotation matrix to quaternion
quat = self.rotation_matrix_to_quaternion(rotation_matrix)
odom_msg.pose.pose.position.x = position[0]
odom_msg.pose.pose.position.y = position[1]
odom_msg.pose.pose.position.z = position[2]
odom_msg.pose.pose.orientation.x = quat[0]
odom_msg.pose.pose.orientation.y = quat[1]
odom_msg.pose.pose.orientation.z = quat[2]
odom_msg.pose.pose.orientation.w = quat[3]
# Publish odometry
self.odom_pub.publish(odom_msg)
def rotation_matrix_to_quaternion(self, rotation_matrix):
"""Convert 3x3 rotation matrix to quaternion"""
# Efficient conversion using the trace method
trace = np.trace(rotation_matrix)
if trace > 0:
s = np.sqrt(trace + 1.0) * 2 # s = 4 * qw
qw = 0.25 * s
qx = (rotation_matrix[2, 1] - rotation_matrix[1, 2]) / s
qy = (rotation_matrix[0, 2] - rotation_matrix[2, 0]) / s
qz = (rotation_matrix[1, 0] - rotation_matrix[0, 1]) / s
else:
if rotation_matrix[0, 0] > rotation_matrix[1, 1] and rotation_matrix[0, 0] > rotation_matrix[2, 2]:
s = np.sqrt(1.0 + rotation_matrix[0, 0] - rotation_matrix[1, 1] - rotation_matrix[2, 2]) * 2
qw = (rotation_matrix[2, 1] - rotation_matrix[1, 2]) / s
qx = 0.25 * s
qy = (rotation_matrix[0, 1] + rotation_matrix[1, 0]) / s
qz = (rotation_matrix[0, 2] + rotation_matrix[2, 0]) / s
elif rotation_matrix[1, 1] > rotation_matrix[2, 2]:
s = np.sqrt(1.0 + rotation_matrix[1, 1] - rotation_matrix[0, 0] - rotation_matrix[2, 2]) * 2
qw = (rotation_matrix[0, 2] - rotation_matrix[2, 0]) / s
qx = (rotation_matrix[0, 1] + rotation_matrix[1, 0]) / s
qy = 0.25 * s
qz = (rotation_matrix[1, 2] + rotation_matrix[2, 1]) / s
else:
s = np.sqrt(1.0 + rotation_matrix[2, 2] - rotation_matrix[0, 0] - rotation_matrix[1, 1]) * 2
qw = (rotation_matrix[1, 0] - rotation_matrix[0, 1]) / s
qx = (rotation_matrix[0, 2] + rotation_matrix[2, 0]) / s
qy = (rotation_matrix[1, 2] + rotation_matrix[2, 1]) / s
qz = 0.25 * s
return [qx, qy, qz, qw]
def main(args=None):
rclpy.init(args=args)
node = OptimizedVSLAMNode()
try:
rclpy.spin(node)
except KeyboardInterrupt:
pass
finally:
node.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
main()
Isaac ROS Navigation
Navigation Stack Overview
Isaac ROS enhances the traditional Nav2 stack with hardware acceleration:
# config/navigation_config.yaml
bt_navigator:
ros__parameters:
use_sim_time: False
global_frame: map
robot_base_frame: base_link
odom_topic: /odom
bt_xml_filename: "navigate_w_replanning_and_recovery.xml"
default_server_timeout: 20
enable_groot_monitoring: True
enable_logging: True
enable_scenario_introspection: True
enable_tf_timeout: True
global_frame_to_planner_frame_transforms: ["map", "odom"]
robot_base_frame_to_carrot_frame_transforms: ["base_link", "base_link"]
controller_server:
ros__parameters:
use_sim_time: False
controller_frequency: 20.0
min_x_velocity_threshold: 0.001
min_y_velocity_threshold: 0.5
min_theta_velocity_threshold: 0.001
progress_checker_plugin: "progress_checker"
goal_checker_plugin: "goal_checker"
controller_plugins: ["FollowPath"]
# DWB Controller
FollowPath:
plugin: "nav2_mppi_controller::MppiController"
time_steps: 24
control_horizon: 12
time_delta: 0.1
discretization: 0.1
velocity_scaling_factor: 0.1
qp_iter_limit: 1000
qp_eps: 0.01
xy_goal_tolerance: 0.25
yaw_goal_tolerance: 0.25
state_bounds_x: [-0.25, 0.25]
state_bounds_y: [-0.25, 0.25]
state_bounds_theta: [-1.5, 1.5]
control_bounds_x: [-0.5, 0.5]
control_bounds_y: [-0.5, 0.5]
control_bounds_theta: [-1.5, 1.5]
cost_perception: 0.05
cost_obstacles: 0.5
cost_goal_angle: 0.05
cost_path_align: 0.1
cost_goal_dist: 0.5
cost_nonholonomic: 0.1
cost_reference: 0.0
reference_control: [0.2, 0.0, 0.0]
local_costmap:
local_costmap:
ros__parameters:
update_frequency: 5.0
publish_frequency: 2.0
global_frame: odom
robot_base_frame: base_link
use_sim_time: False
rolling_window: true
width: 3
height: 3
resolution: 0.05
robot_radius: 0.22
plugins: ["voxel_layer", "inflation_layer"]
inflation_layer:
plugin: "nav2_costmap_2d::InflationLayer"
cost_scaling_factor: 3.0
inflation_radius: 0.55
voxel_layer:
plugin: "nav2_costmap_2d::VoxelLayer"
enabled: True
publish_voxel_map: False
origin_z: 0.0
z_resolution: 0.05
z_voxels: 16
max_obstacle_height: 2.0
mark_threshold: 0
observation_sources: scan
scan:
topic: /scan
max_obstacle_height: 2.0
clearing: True
marking: True
data_type: "LaserScan"
raytrace_max_range: 3.0
raytrace_min_range: 0.0
obstacle_max_range: 2.5
obstacle_min_range: 0.0
global_costmap:
global_costmap:
ros__parameters:
update_frequency: 1.0
publish_frequency: 1.0
global_frame: map
robot_base_frame: base_link
use_sim_time: False
robot_radius: 0.22
resolution: 0.05
track_unknown_space: true
plugins: ["static_layer", "obstacle_layer", "inflation_layer"]
obstacle_layer:
plugin: "nav2_costmap_2d::ObstacleLayer"
enabled: True
observation_sources: scan
scan:
topic: /scan
max_obstacle_height: 2.0
clearing: True
marking: True
data_type: "LaserScan"
raytrace_max_range: 3.0
raytrace_min_range: 0.0
obstacle_max_range: 2.5
obstacle_min_range: 0.0
static_layer:
plugin: "nav2_costmap_2d::StaticLayer"
map_subscribe_transient_local: True
inflation_layer:
plugin: "nav2_costmap_2d::InflationLayer"
cost_scaling_factor: 3.0
inflation_radius: 0.55
Isaac ROS Path Planning with Hardware Acceleration
# Example: Isaac ROS enhanced path planner
import rclpy
from rclpy.node import Node
from nav_msgs.msg import OccupancyGrid, Path
from geometry_msgs.msg import PoseStamped, Point
from visualization_msgs.msg import Marker, MarkerArray
import numpy as np
import torch # For GPU acceleration
class IsaacPathPlannerNode(Node):
def __init__(self):
super().__init__('isaac_path_planner')
# Check for GPU availability
self.gpu_available = torch.cuda.is_available()
if self.gpu_available:
self.device = torch.device('cuda')
self.get_logger().info('Using GPU for path planning acceleration')
else:
self.device = torch.device('cpu')
self.get_logger().warning('GPU not available, using CPU for path planning')
# Subscriptions
self.costmap_sub = self.create_subscription(
OccupancyGrid,
'/global_costmap/costmap',
self.costmap_callback,
10
)
self.goal_sub = self.create_subscription(
PoseStamped,
'/goal_pose',
self.goal_callback,
10
)
# Publishers
self.path_pub = self.create_publisher(Path, '/plan', 10)
self.vis_pub = self.create_publisher(MarkerArray, '/path_markers', 10)
# Internal state
self.costmap = None
self.start_pose = None
self.goal_pose = None
self.get_logger().info('Isaac Path Planner initialized')
def costmap_callback(self, msg):
"""Process incoming costmap"""
# Convert costmap to numpy array
width = msg.info.width
height = msg.info.height
resolution = msg.info.resolution
origin = msg.info.origin
# Reshape the data
costmap_array = np.array(msg.data).reshape(height, width)
# Store costmap with GPU acceleration if available
if self.gpu_available:
self.costmap_gpu = torch.tensor(costmap_array, device=self.device, dtype=torch.float32)
self.costmap = costmap_array
self.costmap_info = msg.info
self.get_logger().info(f'Received costmap: {width}x{height}, resolution: {resolution}')
def goal_callback(self, msg):
"""Process incoming goal pose"""
self.goal_pose = msg.pose
self.get_logger().info(f'Received goal: ({msg.pose.position.x}, {msg.pose.position.y})')
# Plan path if we have both costmap and start pose
if self.costmap is not None and self.start_pose is not None:
self.plan_path()
def plan_path(self):
"""Plan path using Isaac ROS enhanced algorithms"""
if self.costmap is None or self.goal_pose is None:
self.get_logger().warning('Cannot plan path: missing costmap or goal')
return
# Convert goal to grid coordinates
goal_grid = self.world_to_grid(
self.goal_pose.position.x,
self.goal_pose.position.y
)
# Convert start to grid coordinates
start_grid = self.world_to_grid(
self.start_pose.position.x,
self.start_pose.position.y
)
# Plan path using hardware-accelerated algorithm
if self.gpu_available:
path_grid = self.plan_path_gpu(start_grid, goal_grid)
else:
path_grid = self.plan_path_cpu(start_grid, goal_grid)
# Convert path back to world coordinates
path_world = self.grid_path_to_world(path_grid)
# Publish the path
self.publish_path(path_world)
def plan_path_gpu(self, start_grid, goal_grid):
"""Plan path using GPU acceleration"""
# Convert to GPU tensors
start_tensor = torch.tensor(start_grid, device=self.device, dtype=torch.long)
goal_tensor = torch.tensor(goal_grid, device=self.device, dtype=torch.long)
# Use GPU-accelerated path planning algorithm
# This is a conceptual example - actual Isaac ROS uses optimized CUDA implementations
try:
# Create a copy of the costmap on GPU for planning
planning_costmap = self.costmap_gpu.clone()
# Run path planning algorithm on GPU
# (In practice, Isaac ROS uses specialized CUDA kernels)
path = self.run_gpu_astar(planning_costmap, start_tensor, goal_tensor)
return path.cpu().numpy()
except Exception as e:
self.get_logger().error(f'GPU path planning failed: {str(e)}, falling back to CPU')
return self.plan_path_cpu(start_grid, goal_grid)
def run_gpu_astar(self, costmap, start, goal):
"""Conceptual GPU-accelerated A* algorithm"""
# This is a simplified representation
# Actual Isaac ROS implementations use optimized CUDA kernels
# Initialize open set and closed set on GPU
open_set = torch.zeros_like(costmap, dtype=torch.bool, device=self.device)
closed_set = torch.zeros_like(costmap, dtype=torch.bool, device=self.device)
# Initialize g_scores and f_scores on GPU
g_score = torch.full_like(costmap, float('inf'), dtype=torch.float32, device=self.device)
f_score = torch.full_like(costmap, float('inf'), dtype=torch.float32, device=self.device)
# Set start position scores
g_score[start[1], start[0]] = 0
f_score[start[1], start[0]] = self.heuristic_gpu(start, goal)
open_set[start[1], start[0]] = True
# Continue until open set is empty
while open_set.any():
# Find node with lowest f_score in open set
min_idx = torch.argmin(torch.where(open_set, f_score, torch.tensor(float('inf'), device=self.device)))
current = torch.unravel_index(min_idx, open_set.shape)
current = torch.stack([current[1], current[0]]) # Convert to [x, y] format
# Check if we reached the goal
if torch.equal(current, goal):
return self.reconstruct_path_gpu(closed_set, start, goal)
# Move current from open to closed
open_set[current[1], current[0]] = False
closed_set[current[1], current[0]] = True
# Examine neighbors
for neighbor_offset in [[-1,-1], [-1,0], [-1,1], [0,-1], [0,1], [1,-1], [1,0], [1,1]]:
neighbor = current + torch.tensor(neighbor_offset, device=self.device)
# Check bounds
if (neighbor[0] < 0 or neighbor[0] >= costmap.shape[1] or
neighbor[1] < 0 or neighbor[1] >= costmap.shape[0]):
continue
# Skip if in closed set or occupied
if (closed_set[neighbor[1], neighbor[0]] or
costmap[neighbor[1], neighbor[0]] > 50): # Threshold for occupancy
continue
# Calculate tentative g_score
movement_cost = self.calculate_movement_cost_gpu(current, neighbor, costmap)
tentative_g_score = g_score[current[1], current[0]] + movement_cost
# If this path is better, update
if tentative_g_score < g_score[neighbor[1], neighbor[0]]:
g_score[neighbor[1], neighbor[0]] = tentative_g_score
f_score[neighbor[1], neighbor[0]] = tentative_g_score + self.heuristic_gpu(neighbor, goal)
if not open_set[neighbor[1], neighbor[0]]:
open_set[neighbor[1], neighbor[0]] = True
# If we get here, no path was found
self.get_logger().warning('No path found using GPU A*')
return []
def heuristic_gpu(self, pos1, pos2):
"""Calculate heuristic distance on GPU"""
diff = pos1.float() - pos2.float()
return torch.sqrt(torch.sum(diff * diff)).item()
def calculate_movement_cost_gpu(self, pos1, pos2, costmap):
"""Calculate movement cost considering terrain"""
# Diagonal movement costs more
dx = abs(pos1[0] - pos2[0])
dy = abs(pos1[1] - pos2[1])
base_cost = np.sqrt(dx*dx + dy*dy) # Euclidean distance
# Add terrain cost from costmap
avg_terrain_cost = (costmap[pos1[1], pos1[0]] + costmap[pos2[1], pos2[0]]) / 2.0
terrain_multiplier = 1.0 + avg_terrain_cost / 100.0 # Normalize and apply multiplier
return base_cost * terrain_multiplier
def reconstruct_path_gpu(self, closed_set, start, goal):
"""Reconstruct path from closed set (simplified)"""
# In a real implementation, we'd need to store parent pointers
# This is a conceptual placeholder
return [start.cpu().numpy(), goal.cpu().numpy()]
def plan_path_cpu(self, start_grid, goal_grid):
"""Plan path using CPU (fallback)"""
import heapq
def heuristic(pos1, pos2):
return ((pos1[0] - pos2[0]) ** 2 + (pos1[1] - pos2[1]) ** 2) ** 0.5
# A* algorithm implementation
open_set = [(0, start_grid)]
came_from = {}
g_score = {start_grid: 0}
f_score = {start_grid: heuristic(start_grid, goal_grid)}
open_set_hash = {start_grid}
while open_set:
current = heapq.heappop(open_set)[1]
open_set_hash.remove(current)
if current == goal_grid:
# Reconstruct path
path = []
while current in came_from:
path.append(current)
current = came_from[current]
path.append(start_grid)
return path[::-1]
# Check 8-connected neighbors
for dx, dy in [(-1,-1), (-1,0), (-1,1), (0,-1), (0,1), (1,-1), (1,0), (1,1)]:
neighbor = (current[0] + dx, current[1] + dy)
if (0 <= neighbor[0] < self.costmap.shape[1] and
0 <= neighbor[1] < self.costmap.shape[0] and
self.costmap[neighbor[1], neighbor[0]] < 50): # Not occupied
tentative_g_score = g_score[current] + heuristic(current, neighbor)
if neighbor not in g_score or tentative_g_score < g_score[neighbor]:
came_from[neighbor] = current
g_score[neighbor] = tentative_g_score
f_score[neighbor] = tentative_g_score + heuristic(neighbor, goal_grid)
if neighbor not in open_set_hash:
heapq.heappush(open_set, (f_score[neighbor], neighbor))
open_set_hash.add(neighbor)
self.get_logger().warning('No path found using CPU A*')
return []
def world_to_grid(self, x, y):
"""Convert world coordinates to grid coordinates"""
if self.costmap_info is None:
return (0, 0)
grid_x = int((x - self.costmap_info.origin.position.x) / self.costmap_info.resolution)
grid_y = int((y - self.costmap_info.origin.position.y) / self.costmap_info.resolution)
return (grid_x, grid_y)
def grid_path_to_world(self, path_grid):
"""Convert grid path to world coordinates"""
if self.costmap_info is None:
return []
path_world = []
for grid_x, grid_y in path_grid:
world_x = grid_x * self.costmap_info.resolution + self.costmap_info.origin.position.x
world_y = grid_y * self.costmap_info.resolution + self.costmap_info.origin.position.y
path_world.append((world_x, world_y))
return path_world
def publish_path(self, path_world):
"""Publish the planned path"""
path_msg = Path()
path_msg.header.stamp = self.get_clock().now().to_msg()
path_msg.header.frame_id = 'map'
for x, y in path_world:
pose = PoseStamped()
pose.header.frame_id = 'map'
pose.pose.position.x = x
pose.pose.position.y = y
pose.pose.position.z = 0.0
pose.pose.orientation.w = 1.0
path_msg.poses.append(pose)
self.path_pub.publish(path_msg)
self.get_logger().info(f'Published path with {len(path_msg.poses)} waypoints')
def main(args=None):
rclpy.init(args=args)
node = IsaacPathPlannerNode()
try:
rclpy.spin(node)
except KeyboardInterrupt:
pass
finally:
node.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
main()
Integration with Isaac Sim
Isaac Sim to Isaac ROS Pipeline
# Example: Integrate Isaac Sim with Isaac ROS VSLAM
import omni
from omni.isaac.core import World
from omni.isaac.core.utils.stage import add_reference_to_stage
import rclpy
from sensor_msgs.msg import Image, CameraInfo, Imu
from geometry_msgs.msg import Twist
from cv_bridge import CvBridge
import numpy as np
class IsaacSimVSLAMIntegration:
def __init__(self):
# Initialize ROS
rclpy.init()
self.node = rclpy.create_node('isaac_sim_vslam_integration')
# Initialize CV bridge
self.cv_bridge = CvBridge()
# Set up publishers for Isaac Sim camera and IMU data
self.left_cam_pub = self.node.create_publisher(Image, '/camera/left/image_rect_color', 10)
self.right_cam_pub = self.node.create_publisher(Image, '/camera/right/image_rect_color', 10)
self.cam_info_pub = self.node.create_publisher(CameraInfo, '/camera/left/camera_info', 10)
self.imu_pub = self.node.create_publisher(Imu, '/imu/data', 10)
# Set up subscriber for VSLAM odometry
self.odom_sub = self.node.create_subscription(
Odometry,
'/visual_slam/odometry',
self.vslam_odom_callback,
10
)
# Initialize Isaac Sim
self.world = World(stage_units_in_meters=1.0)
# Set up simulation parameters
self.sim_rate = 60.0 # Hz
self.vslam_rate = 30.0 # Hz (processing every 2nd simulation step)
self.step_count = 0
# Camera parameters (these would come from Isaac Sim)
self.camera_params = {
'width': 640,
'height': 480,
'fx': 320.0,
'fy': 320.0,
'cx': 320.0,
'cy': 240.0,
'k1': 0.0,
'k2': 0.0,
'p1': 0.0,
'p2': 0.0,
'k3': 0.0
}
self.get_logger().info('Isaac Sim VSLAM Integration initialized')
def run(self):
"""Main execution loop"""
self.world.reset()
while True:
# Step Isaac Sim
self.world.step(render=True)
# Process VSLAM integration every N steps
if self.step_count % int(self.sim_rate / self.vslam_rate) == 0:
self.process_vslam_integration()
self.step_count += 1
def process_vslam_integration(self):
"""Process VSLAM integration steps"""
# 1. Get camera images from Isaac Sim
left_img, right_img = self.get_stereo_images()
# 2. Get IMU data from Isaac Sim
imu_data = self.get_imu_data()
# 3. Publish to ROS topics for Isaac ROS VSLAM
self.publish_camera_data(left_img, right_img)
self.publish_imu_data(imu_data)
# 4. Process ROS callbacks
rclpy.spin_once(self.node, timeout_sec=0)
def get_stereo_images(self):
"""Get stereo camera images from Isaac Sim"""
# This would interface with Isaac Sim's rendering system
# For now, returning dummy data
import cv2
dummy_img = np.random.randint(0, 255, (480, 640, 3), dtype=np.uint8)
return dummy_img, dummy_img # Left and right images
def get_imu_data(self):
"""Get IMU data from Isaac Sim robot"""
# This would interface with Isaac Sim's physics engine
# For now, returning dummy data
return {
'orientation': [0.0, 0.0, 0.0, 1.0],
'angular_velocity': [0.0, 0.0, 0.0],
'linear_acceleration': [0.0, 0.0, 9.81] # Gravity
}
def publish_camera_data(self, left_img, right_img):
"""Publish camera images to ROS topics"""
# Create and publish left camera image
left_msg = self.cv_bridge.cv2_to_imgmsg(left_img, encoding='bgr8')
left_msg.header.stamp = self.node.get_clock().now().to_msg()
left_msg.header.frame_id = 'camera_left'
self.left_cam_pub.publish(left_msg)
# Create and publish right camera image
right_msg = self.cv_bridge.cv2_to_imgmsg(right_img, encoding='bgr8')
right_msg.header.stamp = left_msg.header.stamp # Same timestamp
right_msg.header.frame_id = 'camera_right'
self.right_cam_pub.publish(right_msg)
# Publish camera info
cam_info_msg = self.create_camera_info_msg()
cam_info_msg.header.stamp = left_msg.header.stamp
cam_info_msg.header.frame_id = 'camera_left'
self.cam_info_pub.publish(cam_info_msg)
def create_camera_info_msg(self):
"""Create camera info message"""
from sensor_msgs.msg import CameraInfo
cam_info = CameraInfo()
cam_info.width = self.camera_params['width']
cam_info.height = self.camera_params['height']
cam_info.k = [
self.camera_params['fx'], 0.0, self.camera_params['cx'],
0.0, self.camera_params['fy'], self.camera_params['cy'],
0.0, 0.0, 1.0
]
cam_info.d = [
self.camera_params['k1'], self.camera_params['k2'],
self.camera_params['p1'], self.camera_params['p2'],
self.camera_params['k3']
]
cam_info.r = [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0]
cam_info.p = [
self.camera_params['fx'], 0.0, self.camera_params['cx'], 0.0,
0.0, self.camera_params['fy'], self.camera_params['cy'], 0.0,
0.0, 0.0, 1.0, 0.0
]
return cam_info
def publish_imu_data(self, imu_data):
"""Publish IMU data to ROS topic"""
from sensor_msgs.msg import Imu
imu_msg = Imu()
imu_msg.header.stamp = self.node.get_clock().now().to_msg()
imu_msg.header.frame_id = 'imu_link'
# Set orientation
imu_msg.orientation.x = imu_data['orientation'][0]
imu_msg.orientation.y = imu_data['orientation'][1]
imu_msg.orientation.z = imu_data['orientation'][2]
imu_msg.orientation.w = imu_data['orientation'][3]
# Set angular velocity
imu_msg.angular_velocity.x = imu_data['angular_velocity'][0]
imu_msg.angular_velocity.y = imu_data['angular_velocity'][1]
imu_msg.angular_velocity.z = imu_data['angular_velocity'][2]
# Set linear acceleration
imu_msg.linear_acceleration.x = imu_data['linear_acceleration'][0]
imu_msg.linear_acceleration.y = imu_data['linear_acceleration'][1]
imu_msg.linear_acceleration.z = imu_data['linear_acceleration'][2]
self.imu_pub.publish(imu_msg)
def vslam_odom_callback(self, msg):
"""Callback for VSLAM odometry - update Isaac Sim robot pose"""
# Extract position and orientation from VSLAM odometry
position = [
msg.pose.pose.position.x,
msg.pose.pose.position.y,
msg.pose.pose.position.z
]
orientation = [
msg.pose.pose.orientation.x,
msg.pose.pose.orientation.y,
msg.pose.pose.orientation.z,
msg.pose.pose.orientation.w
]
# Update robot pose in Isaac Sim
# This would involve setting the robot's position in the simulation
self.update_robot_pose_in_simulation(position, orientation)
def update_robot_pose_in_simulation(self, position, orientation):
"""Update robot pose in Isaac Sim based on VSLAM estimate"""
# This would interface with Isaac Sim's physics engine
# to update the robot's estimated pose
self.get_logger().info(f'VSLAM estimated pose: {position}')
def get_logger(self):
"""Helper to get logger"""
return self.node.get_logger()
def main():
integration = IsaacSimVSLAMIntegration()
try:
integration.run()
except KeyboardInterrupt:
pass
finally:
integration.node.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
main()
Performance Optimization
GPU Resource Management
# Example: Optimized GPU memory management for Isaac ROS
import torch
import gc
class IsaacROSResourceManager:
def __init__(self):
self.gpu_available = torch.cuda.is_available()
if self.gpu_available:
self.device = torch.device('cuda')
self.setup_gpu_memory_management()
self.memory_threshold = 0.8 # 80% memory usage threshold
def setup_gpu_memory_management(self):
"""Configure GPU memory management"""
# Set memory fraction if needed
torch.cuda.set_per_process_memory_fraction(0.9) # Use 90% of GPU memory
# Enable memory caching
torch.cuda.empty_cache()
# Set up memory monitoring
self.monitor_gpu_memory()
def monitor_gpu_memory(self):
"""Monitor GPU memory usage"""
if self.gpu_available:
memory_allocated = torch.cuda.memory_allocated(self.device)
memory_reserved = torch.cuda.memory_reserved(self.device)
memory_total = torch.cuda.get_device_properties(self.device).total_memory
memory_usage = memory_allocated / memory_total
if memory_usage > self.memory_threshold:
self.cleanup_gpu_memory()
def cleanup_gpu_memory(self):
"""Clean up GPU memory"""
torch.cuda.empty_cache()
gc.collect()
# Clear optimizer states if using training
# torch.cuda.synchronize()
def optimize_tensor_operations(self, tensor_list):
"""Optimize tensor operations for better GPU utilization"""
if not self.gpu_available:
return tensor_list
# Concatenate small tensors to reduce kernel launch overhead
optimized_tensors = []
current_batch = []
current_size = 0
max_batch_size = 1024 * 1024 # 1MB threshold
for tensor in tensor_list:
tensor_size = tensor.numel() * tensor.element_size()
if current_size + tensor_size > max_batch_size and current_batch:
# Batch and move to GPU
batched = torch.cat(current_batch, dim=0)
optimized_tensors.append(batched.to(self.device))
current_batch = [tensor]
current_size = tensor_size
else:
current_batch.append(tensor)
current_size += tensor_size
# Process remaining batch
if current_batch:
batched = torch.cat(current_batch, dim=0)
optimized_tensors.append(batched.to(self.device))
return optimized_tensors
Troubleshooting and Best Practices
Common Issues and Solutions
Issue 1: GPU Memory Exhaustion
# Solution: Monitor and limit GPU memory usage
nvidia-smi # Check current GPU usage
# In your code, limit memory allocation:
torch.cuda.set_per_process_memory_fraction(0.7) # Use only 70% of GPU memory
Issue 2: Feature Tracking Failures
# Solution: Adjust feature detection parameters
def adjust_feature_detection_parameters(image_quality):
if image_quality == 'low_light':
# Increase sensitivity for low-light conditions
params = {
'threshold': 10, # Lower threshold for more features
'min_distance': 5, # Closer feature spacing
'max_features': 2000 # More features to track
}
elif image_quality == 'high_motion':
# Optimize for fast-moving scenes
params = {
'threshold': 30, # Higher threshold to avoid noise
'min_distance': 15, # Wider feature spacing
'max_features': 800 # Fewer features for faster processing
}
else:
# Default parameters
params = {
'threshold': 20,
'min_distance': 10,
'max_features': 1000
}
return params
Issue 3: Loop Closure Failures
# Solution: Implement robust loop closure detection
class LoopClosureDetector:
def __init__(self):
self.keyframe_database = []
self.loop_candidates = []
def detect_loop_candidates(self, current_keyframe):
"""Detect potential loop closures"""
candidates = []
for kf in self.keyframe_database:
# Use appearance-based similarity
similarity = self.compute_appearance_similarity(current_keyframe, kf)
# Use geometric consistency
geometric_consistency = self.check_geometric_consistency(current_keyframe, kf)
if similarity > 0.7 and geometric_consistency:
candidates.append({
'keyframe': kf,
'similarity': similarity,
'timestamp': kf.timestamp
})
return candidates
def compute_appearance_similarity(self, kf1, kf2):
"""Compute visual similarity between keyframes"""
# Implementation using bag-of-words or deep features
pass
def check_geometric_consistency(self, kf1, kf2):
"""Check geometric consistency of potential loop closure"""
# Implementation using essential matrix or PGO
pass
Hands-On Exercise
- Set up Isaac ROS on your development machine with GPU support
- Configure a VSLAM pipeline using stereo cameras
- Integrate with Isaac Sim to create a simulated environment
- Run the VSLAM algorithm and observe localization performance
- Configure navigation stack with Isaac ROS enhancements
- Test path planning in the simulated environment
- Evaluate performance gains from GPU acceleration
- Experiment with different parameters to optimize results
Example commands to run Isaac ROS VSLAM:
# Launch Isaac ROS VSLAM pipeline
ros2 launch isaac_ros_visual_slam visual_slam.launch.py
# Launch navigation stack
ros2 launch nav2_bringup navigation_launch.py
# Visualize results in RViz
ros2 run rviz2 rviz2 -d /opt/ros/humble/share/nav2_bringup/rviz/nav2_default_view.rviz
Summary
This lesson covered Isaac ROS for hardware-accelerated VSLAM and navigation. You learned about the architecture, components, and how to set up and optimize VSLAM and navigation pipelines with GPU acceleration. The next lesson will explore path planning for bipedal humanoid movement with Nav2.