Skip to main content

Lesson 4.4: Building a Basic VLA Pipeline for Humanoid Robots

Overview

This lesson brings together all VLA components to build a complete Vision-Language-Action pipeline for humanoid robots. You'll integrate voice processing, LLM reasoning, computer vision, and robot control into a unified system.

Learning Objectives

By the end of this lesson, you should be able to:

  • Design and implement a complete VLA pipeline architecture
  • Integrate voice processing, LLM reasoning, and computer vision
  • Configure the pipeline for humanoid robot control
  • Test and validate the complete VLA system
  • Optimize performance and troubleshoot common issues

VLA Pipeline Architecture

Complete VLA System Overview

�����������������    �����������������    �����������������
 Voice Input   LLM Reasoning   Vision 
 (Whisper) ���� (OpenAI GPT) ���� (Isaac ROS) 
     
 " Speech-to-   " Command   " Object 
 Text   Interpretation  Detection 
 " Voice Commands  " Action   " Pose Estimation
 " Natural Lang   Sequencing   " Manipulation 
����������������� ����������������� �����������������
  
� � �
�����������������������������������������������������������������
 VLA Cognitive Planner 
 " Task Decomposition 
 " Multi-modal Fusion 
 " Action Sequencing 
 " Safety Validation 
�����������������������������������������������������������������


����������������� ����������������� �����������������
 Navigation   Manipulation   Humanoid 
 (Nav2)   (MoveIt2)   Control 
     
 " Path Planning   " Grasp Planning  " Balance 
 " Obstacle Avoid  " Trajectory Gen  " Locomotion 
 " Localization   " Execution   " Coordination 
����������������� ����������������� �����������������
  
�����������������������<�����������������������

Humanoid Robot
Actions & Behaviors

Implementing the VLA Pipeline

VLA Node Configuration

# config/vla_pipeline_config.yaml
vla_pipeline:
ros__parameters:
# Voice processing parameters
whisper_model_path: "/models/whisper-base.en.pt"
whisper_sampling_rate: 16000
voice_command_timeout: 10.0
voice_activity_threshold: 0.3

# LLM integration parameters
llm_model: "gpt-4-turbo" # or other compatible model
llm_temperature: 0.3
llm_max_tokens: 500
llm_response_timeout: 15.0

# Vision processing parameters
detection_confidence_threshold: 0.7
detection_max_objects: 20
vision_processing_rate: 10.0 # Hz

# Action execution parameters
action_execution_timeout: 30.0
safety_check_frequency: 1.0 # Hz
emergency_stop_threshold: 0.5 # Distance to obstacle

# Cognitive planning parameters
plan_horizon_seconds: 5.0
replan_frequency: 2.0 # Hz
plan_validation_enabled: true

# Performance monitoring
enable_performance_metrics: true
performance_report_frequency: 1.0 # Hz

Main VLA Pipeline Node

# vla_pipeline/vla_main_node.py
import rclpy
from rclpy.node import Node
from std_msgs.msg import String
from sensor_msgs.msg import Image, CameraInfo
from geometry_msgs.msg import PoseStamped
from audio_common_msgs.msg import AudioData
import openai
import torch
import whisper
import json
import time
from threading import Thread, Lock

class VLAPipelineNode(Node):
def __init__(self):
super().__init__('vla_pipeline_node')

# Initialize Whisper model for voice processing
self.get_logger().info('Loading Whisper model...')
self.whisper_model = whisper.load_model("base.en")

# Initialize LLM client (using OpenAI as example)
# In practice, this could be any compatible LLM service
self.llm_client = None # Will be initialized with API key

# Internal state
self.current_task = None
self.task_lock = Lock()
self.last_voice_timestamp = None

# Subscriptions
self.voice_sub = self.create_subscription(
AudioData,
'/audio_input',
self.voice_callback,
10
)

self.image_sub = self.create_subscription(
Image,
'/camera/color/image_rect_color',
self.image_callback,
10
)

self.camera_info_sub = self.create_subscription(
CameraInfo,
'/camera/color/camera_info',
self.camera_info_callback,
10
)

# Publishers
self.action_cmd_pub = self.create_publisher(
String,
'/action_command',
10
)

self.navigation_cmd_pub = self.create_publisher(
PoseStamped,
'/navigation_goal',
10
)

self.manipulation_cmd_pub = self.create_publisher(
String,
'/manipulation_command',
10
)

# Timers
self.processing_timer = self.create_timer(0.1, self.process_pending_tasks)

self.get_logger().info('VLA Pipeline node initialized')

def voice_callback(self, msg):
"""Process incoming voice commands"""
try:
# Convert audio data to numpy array (simplified - actual implementation would depend on audio format)
import numpy as np
audio_data = np.frombuffer(msg.data, dtype=np.int16).astype(np.float32) / 32768.0

# Transcribe using Whisper
result = self.whisper_model.transcribe(audio_data)
transcribed_text = result['text']

self.get_logger().info(f'Transcribed voice command: {transcribed_text}')

# Process the command with LLM
self.process_command_with_llm(transcribed_text)

except Exception as e:
self.get_logger().error(f'Error processing voice command: {str(e)}')

def image_callback(self, msg):
"""Process incoming camera images for vision component"""
# In a real implementation, this would trigger vision processing
# For now, we'll just store the image for when it's needed
self.last_image = msg

def camera_info_callback(self, msg):
"""Process camera calibration information"""
self.camera_info = msg

def process_command_with_llm(self, command_text):
"""Process command using LLM to generate action sequence"""
try:
# Prepare the prompt for the LLM
# This is a simplified example - real implementation would use more sophisticated prompting
prompt = f"""
You are a cognitive planner for a humanoid robot. Given the following voice command,
break it down into a sequence of specific robot actions that can be executed by the robot.

Command: "{command_text}"

Respond with a JSON object containing:
{{
"task_decomposition": ["action1", "action2", ...],
"required_vision_processing": true/false,
"navigation_required": true/false,
"manipulation_required": true/false,
"estimated_complexity": "low/medium/high"
}}

Keep actions specific and executable by a humanoid robot in a simulation environment.
"""

# Call the LLM (this is a conceptual example)
# In practice, you'd use the actual LLM API
response = self.call_llm(prompt)

# Parse the response
try:
parsed_response = json.loads(response)
task_sequence = parsed_response.get('task_decomposition', [])

# Store the task for processing
with self.task_lock:
self.current_task = {
'command': command_text,
'actions': task_sequence,
'requires_vision': parsed_response.get('required_vision_processing', False),
'requires_navigation': parsed_response.get('navigation_required', False),
'requires_manipulation': parsed_response.get('manipulation_required', False),
'complexity': parsed_response.get('estimated_complexity', 'medium')
}

self.get_logger().info(f'Generated task sequence: {task_sequence}')

except json.JSONDecodeError:
self.get_logger().error('LLM response was not valid JSON')

except Exception as e:
self.get_logger().error(f'Error processing command with LLM: {str(e)}')

def call_llm(self, prompt):
"""Call the LLM with the given prompt (conceptual implementation)"""
# In a real implementation, this would call the actual LLM API
# For demonstration, returning a mock response
mock_response = {
"task_decomposition": [
"locate_target_object",
"navigate_to_object",
"identify_grasp_point",
"execute_grasp",
"lift_object"
],
"required_vision_processing": True,
"navigation_required": True,
"manipulation_required": True,
"estimated_complexity": "medium"
}
return json.dumps(mock_response)

def process_pending_tasks(self):
"""Process any pending tasks in the queue"""
with self.task_lock:
if self.current_task is None:
return

task = self.current_task
self.current_task = None # Clear for next task

# Execute the task sequence
self.execute_task_sequence(task)

def execute_task_sequence(self, task):
"""Execute the sequence of actions for the given task"""
command = task['command']
actions = task['actions']

self.get_logger().info(f'Executing task: {command}')
self.get_logger().info(f'Action sequence: {actions}')

for i, action in enumerate(actions):
self.get_logger().info(f'Executing action {i+1}/{len(actions)}: {action}')

# Execute each action
success = self.execute_single_action(action, task)

if not success:
self.get_logger().error(f'Action failed: {action}')
# Could implement recovery strategies here
break

# Small delay between actions for safety
time.sleep(0.1)

self.get_logger().info('Task execution completed')

def execute_single_action(self, action, task_context):
"""Execute a single action in the sequence"""
try:
if action == "locate_target_object":
return self.locate_target_object(task_context)
elif action == "navigate_to_object":
return self.navigate_to_object(task_context)
elif action == "identify_grasp_point":
return self.identify_grasp_point(task_context)
elif action == "execute_grasp":
return self.execute_grasp(task_context)
elif action == "lift_object":
return self.lift_object(task_context)
elif action == "navigate_to_disposal_area":
return self.navigate_to_disposal_area(task_context)
elif action == "release_object":
return self.release_object(task_context)
else:
# Generic action handler
return self.handle_generic_action(action, task_context)

except Exception as e:
self.get_logger().error(f'Error executing action {action}: {str(e)}')
return False

def locate_target_object(self, task_context):
"""Locate the target object using vision system"""
if not task_context.get('requires_vision', False):
self.get_logger().info('Skipping vision processing - not required for this task')
return True

# Trigger vision processing to locate objects
# In practice, this would interface with Isaac ROS detection
self.get_logger().info('Locating target object using vision system...')

# Wait for vision results or timeout
timeout = time.time() + 5.0 # 5 second timeout
while time.time() < timeout:
if hasattr(self, 'last_vision_results') and self.last_vision_results:
# Process vision results
self.get_logger().info('Target object located')
return True
time.sleep(0.1)

self.get_logger().error('Timeout waiting for vision results')
return False

def navigate_to_object(self, task_context):
"""Navigate to the located object"""
if not task_context.get('requires_navigation', False):
self.get_logger().info('Skipping navigation - not required for this task')
return True

# Create and publish navigation goal
goal_pose = PoseStamped()
goal_pose.header.stamp = self.get_clock().now().to_msg()
goal_pose.header.frame_id = 'map'

# In a real implementation, this would use the actual object location
# For demo, using a fixed location
goal_pose.pose.position.x = 1.0
goal_pose.pose.position.y = 1.0
goal_pose.pose.position.z = 0.0
goal_pose.pose.orientation.w = 1.0

self.navigation_cmd_pub.publish(goal_pose)
self.get_logger().info('Published navigation goal')

# Wait for navigation to complete or timeout
return self.wait_for_navigation_completion(30.0) # 30 second timeout

def identify_grasp_point(self, task_context):
"""Identify appropriate grasp point for the object"""
# This would interface with Isaac ROS manipulation components
self.get_logger().info('Identifying grasp point...')

# For demo, returning success
return True

def execute_grasp(self, task_context):
"""Execute grasp action using manipulation system"""
if not task_context.get('requires_manipulation', False):
self.get_logger().info('Skipping manipulation - not required for this task')
return True

# Publish grasp command
grasp_cmd = String()
grasp_cmd.data = "execute_grasp"
self.manipulation_cmd_pub.publish(grasp_cmd)
self.get_logger().info('Published grasp command')

# Wait for grasp completion
return self.wait_for_manipulation_completion(10.0) # 10 second timeout

def lift_object(self, task_context):
"""Lift the grasped object"""
if not task_context.get('requires_manipulation', False):
self.get_logger().info('Skipping manipulation - not required for this task')
return True

# Publish lift command
lift_cmd = String()
lift_cmd.data = "lift_object"
self.manipulation_cmd_pub.publish(lift_cmd)
self.get_logger().info('Published lift command')

# Wait for lift completion
return self.wait_for_manipulation_completion(10.0)

def wait_for_navigation_completion(self, timeout):
"""Wait for navigation to complete (simplified implementation)"""
# In a real implementation, this would monitor navigation status
# For demo, just wait for a fixed time
time.sleep(2.0)
return True

def wait_for_manipulation_completion(self, timeout):
"""Wait for manipulation to complete (simplified implementation)"""
# In a real implementation, this would monitor manipulation status
# For demo, just wait for a fixed time
time.sleep(2.0)
return True

def handle_generic_action(self, action, task_context):
"""Handle a generic action that doesn't match specific handlers"""
self.get_logger().info(f'Handling generic action: {action}')

# Publish generic action command
cmd = String()
cmd.data = action
self.action_cmd_pub.publish(cmd)

return True

def main(args=None):
rclpy.init(args=args)
node = VLAPipelineNode()

try:
rclpy.spin(node)
except KeyboardInterrupt:
pass
finally:
node.destroy_node()
rclpy.shutdown()

if __name__ == '__main__':
main()

Isaac Sim Integration for VLA Testing

Isaac Sim Environment Configuration

# isaac_sim_vla_env.py
import omni
from omni.isaac.core import World
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.objects import DynamicCuboid
from omni.isaac.core.materials import OmniPBRMaterial
from omni.isaac.range_sensor import _range_sensor
import numpy as np

class VLATestEnvironment:
def __init__(self):
# Initialize Isaac Sim world
self.world = World(stage_units_in_meters=1.0)

# Setup parameters
self.robot_usd_path = "/path/to/humanoid_robot.usd"
self.robot_prim_path = "/World/HumanoidRobot"

# Objects for VLA testing
self.test_objects = [
{"name": "red_cube", "color": (1.0, 0.0, 0.0), "size": (0.1, 0.1, 0.1), "position": (1.0, 1.0, 0.1)},
{"name": "blue_sphere", "color": (0.0, 0.0, 1.0), "size": (0.1, 0.1, 0.1), "position": (1.5, 1.0, 0.1)},
{"name": "green_cylinder", "color": (0.0, 1.0, 0.0), "size": (0.1, 0.1, 0.2), "position": (1.2, 1.5, 0.1)}
]

def setup_environment(self):
"""Set up the Isaac Sim environment for VLA testing"""
# Add robot to stage
add_reference_to_stage(
usd_path=self.robot_usd_path,
prim_path=self.robot_prim_path
)

# Set robot initial position
robot_prim = get_prim_at_path(self.robot_prim_path)
robot_prim.GetAttribute("xformOp:translate").Set((0.0, 0.0, 0.8))

# Add test objects to environment
for obj_data in self.test_objects:
if "cube" in obj_data["name"]:
# Add cube object
self.world.scene.add(
DynamicCuboid(
prim_path=f"/World/{obj_data['name']}",
name=obj_data["name"],
position=obj_data["position"],
size=obj_data["size"][0], # Cube size
color=np.array(obj_data["color"])
)
)
elif "sphere" in obj_data["name"]:
# Add sphere object (would use different primitive in Isaac Sim)
self.add_sphere_object(obj_data)

# Add lighting
self.setup_lighting()

# Add camera for vision system
self.setup_camera_system()

self.get_logger().info('VLA test environment set up successfully')

def add_sphere_object(self, obj_data):
"""Add a sphere object to the environment"""
# In Isaac Sim, you would use a different primitive for spheres
# This is a conceptual example
from omni.isaac.core.prims import GeometryPrim
from pxr import UsdGeom

sphere_prim = GeometryPrim(
prim_path=f"/World/{obj_data['name']}",
name=obj_data["name"],
position=obj_data["position"],
prim_type="Sphere"
)

# Set sphere properties
sphere_geom = UsdGeom.Sphere(sphere_prim.prim)
sphere_geom.CreateRadiusAttr(obj_data["size"][0] / 2.0)

def setup_lighting(self):
"""Set up lighting for the environment"""
from omni.isaac.core.utils.prims import define_prim
from pxr import UsdLux

# Add dome light
dome_light_path = "/World/DomeLight"
define_prim(dome_light_path, "DomeLight")
dome_light = UsdLux.DomeLight.Define(self.world.stage, dome_light_path)
dome_light.CreateIntensityAttr(3000.0)

# Add directional light (sun)
sun_light_path = "/World/SunLight"
define_prim(sun_light_path, "DistantLight")
sun_light = UsdLux.DistantLight.Define(self.world.stage, sun_light_path)
sun_light.CreateIntensityAttr(1500.0)
sun_light.CreateColorAttr((1.0, 0.98, 0.9))

def setup_camera_system(self):
"""Set up camera system for vision processing"""
from omni.isaac.sensor import Camera

# Create RGB camera
self.rgb_camera = Camera(
prim_path="/World/Camera",
frequency=30, # 30 Hz
resolution=(640, 480)
)

# Position camera on robot
self.rgb_camera.set_world_pose(position=np.array([0.1, 0.0, 1.6]), orientation=np.array([0.0, 0.0, 0.0, 1.0]))

def run_vla_test(self):
"""Run a complete VLA test cycle"""
self.world.reset()

# Run simulation for a number of steps
for i in range(1000): # Run for 1000 simulation steps
self.world.step(render=True)

# At certain intervals, trigger VLA processing
if i % 100 == 0: # Every 100 steps
self.trigger_vla_processing()

def trigger_vla_processing(self):
"""Trigger VLA processing cycle"""
# This would typically publish messages to ROS topics
# that the VLA pipeline node subscribes to
self.get_logger().info('Triggering VLA processing cycle')

def get_logger(self):
"""Get logger instance"""
return self.world._world_logger

def main():
env = VLATestEnvironment()
env.setup_environment()
env.run_vla_test()

if __name__ == "__main__":
main()

Performance Optimization for VLA Systems

Multi-Modal Fusion Optimization

# vla_pipeline/performance_optimizer.py
import rclpy
from rclpy.node import Node
from std_msgs.msg import Float32
import time
import statistics

class VLAPerformanceOptimizer(Node):
def __init__(self):
super().__init__('vla_performance_optimizer')

# Performance monitoring publishers
self.voice_latency_pub = self.create_publisher(Float32, '/performance/voice_latency', 10)
self.llm_latency_pub = self.create_publisher(Float32, '/performance/llm_latency', 10)
self.vision_latency_pub = self.create_publisher(Float32, '/performance/vision_latency', 10)
self.action_latency_pub = self.create_publisher(Float32, '/performance/action_latency', 10)
self.total_throughput_pub = self.create_publisher(Float32, '/performance/total_throughput', 10)

# Performance metrics storage
self.voice_latencies = []
self.llm_latencies = []
self.vision_latencies = []
self.action_latencies = []

# Adaptive processing parameters
self.voice_processing_rate = 10.0 # Hz
self.llm_processing_rate = 5.0 # Hz (LLM calls are expensive)
self.vision_processing_rate = 15.0 # Hz
self.action_processing_rate = 30.0 # Hz

# Timers for performance reporting
self.performance_report_timer = self.create_timer(1.0, self.report_performance_metrics)

self.get_logger().info('VLA Performance Optimizer initialized')

def measure_component_latency(self, component_name, func, *args, **kwargs):
"""Measure latency of a component function"""
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()

latency = end_time - start_time

# Store latency for statistics
if component_name == "voice":
self.voice_latencies.append(latency)
if len(self.voice_latencies) > 100: # Keep last 100 measurements
self.voice_latencies.pop(0)
self.voice_latency_pub.publish(Float32(data=latency))

elif component_name == "llm":
self.llm_latencies.append(latency)
if len(self.llm_latencies) > 100:
self.llm_latencies.pop(0)
self.llm_latency_pub.publish(Float32(data=latency))

elif component_name == "vision":
self.vision_latencies.append(latency)
if len(self.vision_latencies) > 100:
self.vision_latencies.pop(0)
self.vision_latency_pub.publish(Float32(data=latency))

elif component_name == "action":
self.action_latencies.append(latency)
if len(self.action_latencies) > 100:
self.action_latencies.pop(0)
self.action_latency_pub.publish(Float32(data=latency))

return result

def report_performance_metrics(self):
"""Report performance metrics and adjust parameters if needed"""
if self.voice_latencies:
avg_voice_latency = statistics.mean(self.voice_latencies)
std_voice_latency = statistics.stdev(self.voice_latencies) if len(self.voice_latencies) > 1 else 0.0

self.get_logger().info(f'Voice Processing - Avg: {avg_voice_latency:.3f}s, Std: {std_voice_latency:.3f}s')

if self.llm_latencies:
avg_llm_latency = statistics.mean(self.llm_latencies)
std_llm_latency = statistics.stdev(self.llm_latencies) if len(self.llm_latencies) > 1 else 0.0

self.get_logger().info(f'LLM Processing - Avg: {avg_llm_latency:.3f}s, Std: {std_llm_latency:.3f}s')

# Adjust LLM processing rate based on performance
if avg_llm_latency > 2.0: # If LLM is taking too long
self.llm_processing_rate = max(1.0, self.llm_processing_rate * 0.8) # Slow down
self.get_logger().warn(f'Adjusted LLM processing rate to {self.llm_processing_rate:.2f} Hz due to high latency')

elif avg_llm_latency < 0.5 and len(self.llm_latencies) > 10: # If consistently fast
self.llm_processing_rate = min(10.0, self.llm_processing_rate * 1.1) # Speed up slightly
self.get_logger().info(f'Adjusted LLM processing rate to {self.llm_processing_rate:.2f} Hz')

if self.vision_latencies:
avg_vision_latency = statistics.mean(self.vision_latencies)
std_vision_latency = statistics.stdev(self.vision_latencies) if len(self.vision_latencies) > 1 else 0.0

self.get_logger().info(f'Vision Processing - Avg: {avg_vision_latency:.3f}s, Std: {std_vision_latency:.3f}s')

if self.action_latencies:
avg_action_latency = statistics.mean(self.action_latencies)
std_action_latency = statistics.stdev(self.action_latencies) if len(self.action_latencies) > 1 else 0.0

self.get_logger().info(f'Action Execution - Avg: {avg_action_latency:.3f}s, Std: {std_action_latency:.3f}s')

# Calculate and report throughput
total_completed_tasks = len(self.action_latencies[-10:]) # Last 10 seconds worth
throughput = Float32()
throughput.data = total_completed_tasks / 10.0 # Tasks per second
self.total_throughput_pub.publish(throughput)

def adaptive_resource_allocation(self):
"""Adaptively allocate resources based on performance needs"""
# This would implement more sophisticated resource allocation
# based on current system load and performance requirements
pass

Launch File for Complete VLA Pipeline

<!-- launch/vla_complete_pipeline.launch.py -->
from launch import LaunchDescription
from launch.actions import DeclareLaunchArgument, IncludeLaunchDescription
from launch.conditions import IfCondition
from launch.launch_description_sources import PythonLaunchDescriptionSource
from launch.substitutions import LaunchConfiguration, PathJoinSubstitution
from launch_ros.actions import ComposableNodeContainer
from launch_ros.descriptions import ComposableNode
from ament_index_python.packages import get_package_share_directory

def generate_launch_description():
# Declare launch arguments
namespace_arg = DeclareLaunchArgument(
'namespace',
default_value='',
description='Namespace for the nodes'
)

enable_visualization_arg = DeclareLaunchArgument(
'enable_visualization',
default_value='true',
description='Whether to enable RViz visualization'
)

# Get launch configurations
namespace = LaunchConfiguration('namespace')
enable_visualization = LaunchConfiguration('enable_visualization')

# VLA Pipeline Container
vla_pipeline_container = ComposableNodeContainer(
name='vla_pipeline_container',
namespace=namespace,
package='rclcpp_components',
executable='component_container_mt',
composable_node_descriptions=[
# Whisper voice processing node
ComposableNode(
package='isaac_ros_whisper',
plugin='nvidia::isaac_ros::whisper::WhisperNode',
name='whisper_node',
parameters=[{
'model_name': 'base.en',
'sampling_rate': 16000,
'enable_profiling': False
}],
remappings=[
('/audio_input', '/microphone/audio_raw'),
('/transcription', '/vla/voice_transcription'),
]
),

# LLM cognitive planner node
ComposableNode(
package='isaac_ros_vla',
plugin='nvidia::isaac_ros::vla::CognitivePlannerNode',
name='cognitive_planner_node',
parameters=[{
'llm_model': 'gpt-4-turbo',
'temperature': 0.3,
'max_tokens': 500,
'enable_profiling': True
}],
remappings=[
('/vla/command', '/vla/voice_transcription'),
('/vla/action_sequence', '/vla/planned_actions'),
]
),

# Isaac ROS Visual Slam for localization
ComposableNode(
package='isaac_ros_visual_slam',
plugin='nvidia::isaac_ros::visual_slam::VisualSlamNode',
name='visual_slam_node',
parameters=[{
'enable_occupancy_map': True,
'occupancy_map_resolution': 0.05,
'enable_image_transfer': True,
'enable_localization_n_mapping': True,
'enable_loop_closure': True,
}],
remappings=[
('/visual_slam/imu', '/imu/data'),
('/visual_slam/feature_tracks', 'feature_tracker/feature_tracks'),
('/visual_slam/optimized_odometry', 'visual_slam/optimized_odometry'),
]
),

# Isaac ROS Detection for object recognition
ComposableNode(
package='isaac_ros_detectnet',
plugin='nvidia::isaac_ros::detectnet::DetectNetNode',
name='detectnet_node',
parameters=[{
'model_name': 'ssd_mobilenet_v2_coco',
'confidence_threshold': 0.7,
'enable_profiling': False
}],
remappings=[
('/image', '/camera/color/image_rect_color'),
('/camera_info', '/camera/color/camera_info'),
('/detections', '/vla/object_detections'),
]
),

# VLA pipeline orchestrator
ComposableNode(
package='isaac_ros_vla',
plugin='nvidia::isaac_ros::vla::VLAPipelineNode',
name='vla_pipeline_node',
parameters=[PathJoinSubstitution([
get_package_share_directory('isaac_ros_vla'),
'config',
'vla_pipeline_config.yaml'
])],
remappings=[
('/vla/planned_actions', '/vla/planned_actions'),
('/vla/object_detections', '/vla/object_detections'),
('/action_command', '/robot/action_command'),
('/navigation_goal', '/navigation/goal'),
('/manipulation_command', '/manipulation/command'),
]
)
],
output='screen'
)

# Include Nav2 bringup
nav2_bringup_launch = IncludeLaunchDescription(
PythonLaunchDescriptionSource([
get_package_share_directory('nav2_bringup'),
'/launch/navigation_launch.py'
]),
launch_arguments={
'use_sim_time': 'true',
'params_file': PathJoinSubstitution([
get_package_share_directory('isaac_ros_vla'),
'config',
'nav2_config.yaml'
])
}.items()
)

# Conditional RViz launch
rviz_launch = IncludeLaunchDescription(
PythonLaunchDescriptionSource([
get_package_share_directory('isaac_ros_vla'),
'/launch/rviz.launch.py'
]),
condition=IfCondition(enable_visualization)
)

return LaunchDescription([
namespace_arg,
enable_visualization_arg,
vla_pipeline_container,
nav2_bringup_launch,
rviz_launch
])

Hands-On Exercise

  1. Implement the complete VLA pipeline using the components described
  2. Integrate with Isaac Sim for testing in a simulated environment
  3. Test with various voice commands and evaluate system response
  4. Measure performance metrics and optimize the pipeline
  5. Validate the system's ability to execute complex VLA tasks

Example commands to run the complete VLA pipeline:

# Build the workspace
cd isaac_ros_ws
colcon build --packages-select isaac_ros_vla
source install/setup.bash

# Launch the complete VLA pipeline
ros2 launch isaac_ros_vla vla_complete_pipeline.launch.py

# Send a voice command simulation
ros2 topic pub /audio_input audio_common_msgs/msg/AudioData "data: [0, 1, 2, ...]" # Actual audio data

# Or send a text command directly for testing
ros2 topic pub /vla/voice_transcription std_msgs/msg/String "data: 'pick up the red cube'"

Troubleshooting Common VLA Issues

Performance Issues

  • High Latency: Check GPU utilization, reduce processing rates for expensive components
  • Low Throughput: Optimize component latencies, consider parallel processing
  • Memory Exhaustion: Monitor GPU memory, optimize data transfers

Integration Issues

  • Synchronization: Ensure proper timing between vision, LLM, and action components
  • Coordinate Frames: Verify TF trees are properly established between components
  • Data Formats: Confirm message formats match between components

Summary

This lesson covered building a complete VLA pipeline for humanoid robots. You learned to integrate voice processing, LLM reasoning, computer vision, and robot control into a unified system. The next lesson will explore the capstone project and future directions.