Lesson 4.4: Building a Basic VLA Pipeline for Humanoid Robots
Overview
This lesson brings together all VLA components to build a complete Vision-Language-Action pipeline for humanoid robots. You'll integrate voice processing, LLM reasoning, computer vision, and robot control into a unified system.
Learning Objectives
By the end of this lesson, you should be able to:
- Design and implement a complete VLA pipeline architecture
- Integrate voice processing, LLM reasoning, and computer vision
- Configure the pipeline for humanoid robot control
- Test and validate the complete VLA system
- Optimize performance and troubleshoot common issues
VLA Pipeline Architecture
Complete VLA System Overview
����������������� ����������������� �����������������
Voice Input LLM Reasoning Vision
(Whisper) ���� (OpenAI GPT) ���� (Isaac ROS)
" Speech-to- " Command " Object
Text Interpretation Detection
" Voice Commands " Action " Pose Estimation
" Natural Lang Sequencing " Manipulation
����������������� ����������������� �����������������
� � �
�����������������������������������������������������������������
VLA Cognitive Planner
" Task Decomposition
" Multi-modal Fusion
" Action Sequencing
" Safety Validation
�����������������������������������������������������������������
�
����������������� ����������������� �����������������
Navigation Manipulation Humanoid
(Nav2) (MoveIt2) Control
" Path Planning " Grasp Planning " Balance
" Obstacle Avoid " Trajectory Gen " Locomotion
" Localization " Execution " Coordination
����������������� ����������������� �����������������
�����������������������<�����������������������
�
Humanoid Robot
Actions & Behaviors
Implementing the VLA Pipeline
VLA Node Configuration
# config/vla_pipeline_config.yaml
vla_pipeline:
ros__parameters:
# Voice processing parameters
whisper_model_path: "/models/whisper-base.en.pt"
whisper_sampling_rate: 16000
voice_command_timeout: 10.0
voice_activity_threshold: 0.3
# LLM integration parameters
llm_model: "gpt-4-turbo" # or other compatible model
llm_temperature: 0.3
llm_max_tokens: 500
llm_response_timeout: 15.0
# Vision processing parameters
detection_confidence_threshold: 0.7
detection_max_objects: 20
vision_processing_rate: 10.0 # Hz
# Action execution parameters
action_execution_timeout: 30.0
safety_check_frequency: 1.0 # Hz
emergency_stop_threshold: 0.5 # Distance to obstacle
# Cognitive planning parameters
plan_horizon_seconds: 5.0
replan_frequency: 2.0 # Hz
plan_validation_enabled: true
# Performance monitoring
enable_performance_metrics: true
performance_report_frequency: 1.0 # Hz
Main VLA Pipeline Node
# vla_pipeline/vla_main_node.py
import rclpy
from rclpy.node import Node
from std_msgs.msg import String
from sensor_msgs.msg import Image, CameraInfo
from geometry_msgs.msg import PoseStamped
from audio_common_msgs.msg import AudioData
import openai
import torch
import whisper
import json
import time
from threading import Thread, Lock
class VLAPipelineNode(Node):
def __init__(self):
super().__init__('vla_pipeline_node')
# Initialize Whisper model for voice processing
self.get_logger().info('Loading Whisper model...')
self.whisper_model = whisper.load_model("base.en")
# Initialize LLM client (using OpenAI as example)
# In practice, this could be any compatible LLM service
self.llm_client = None # Will be initialized with API key
# Internal state
self.current_task = None
self.task_lock = Lock()
self.last_voice_timestamp = None
# Subscriptions
self.voice_sub = self.create_subscription(
AudioData,
'/audio_input',
self.voice_callback,
10
)
self.image_sub = self.create_subscription(
Image,
'/camera/color/image_rect_color',
self.image_callback,
10
)
self.camera_info_sub = self.create_subscription(
CameraInfo,
'/camera/color/camera_info',
self.camera_info_callback,
10
)
# Publishers
self.action_cmd_pub = self.create_publisher(
String,
'/action_command',
10
)
self.navigation_cmd_pub = self.create_publisher(
PoseStamped,
'/navigation_goal',
10
)
self.manipulation_cmd_pub = self.create_publisher(
String,
'/manipulation_command',
10
)
# Timers
self.processing_timer = self.create_timer(0.1, self.process_pending_tasks)
self.get_logger().info('VLA Pipeline node initialized')
def voice_callback(self, msg):
"""Process incoming voice commands"""
try:
# Convert audio data to numpy array (simplified - actual implementation would depend on audio format)
import numpy as np
audio_data = np.frombuffer(msg.data, dtype=np.int16).astype(np.float32) / 32768.0
# Transcribe using Whisper
result = self.whisper_model.transcribe(audio_data)
transcribed_text = result['text']
self.get_logger().info(f'Transcribed voice command: {transcribed_text}')
# Process the command with LLM
self.process_command_with_llm(transcribed_text)
except Exception as e:
self.get_logger().error(f'Error processing voice command: {str(e)}')
def image_callback(self, msg):
"""Process incoming camera images for vision component"""
# In a real implementation, this would trigger vision processing
# For now, we'll just store the image for when it's needed
self.last_image = msg
def camera_info_callback(self, msg):
"""Process camera calibration information"""
self.camera_info = msg
def process_command_with_llm(self, command_text):
"""Process command using LLM to generate action sequence"""
try:
# Prepare the prompt for the LLM
# This is a simplified example - real implementation would use more sophisticated prompting
prompt = f"""
You are a cognitive planner for a humanoid robot. Given the following voice command,
break it down into a sequence of specific robot actions that can be executed by the robot.
Command: "{command_text}"
Respond with a JSON object containing:
{{
"task_decomposition": ["action1", "action2", ...],
"required_vision_processing": true/false,
"navigation_required": true/false,
"manipulation_required": true/false,
"estimated_complexity": "low/medium/high"
}}
Keep actions specific and executable by a humanoid robot in a simulation environment.
"""
# Call the LLM (this is a conceptual example)
# In practice, you'd use the actual LLM API
response = self.call_llm(prompt)
# Parse the response
try:
parsed_response = json.loads(response)
task_sequence = parsed_response.get('task_decomposition', [])
# Store the task for processing
with self.task_lock:
self.current_task = {
'command': command_text,
'actions': task_sequence,
'requires_vision': parsed_response.get('required_vision_processing', False),
'requires_navigation': parsed_response.get('navigation_required', False),
'requires_manipulation': parsed_response.get('manipulation_required', False),
'complexity': parsed_response.get('estimated_complexity', 'medium')
}
self.get_logger().info(f'Generated task sequence: {task_sequence}')
except json.JSONDecodeError:
self.get_logger().error('LLM response was not valid JSON')
except Exception as e:
self.get_logger().error(f'Error processing command with LLM: {str(e)}')
def call_llm(self, prompt):
"""Call the LLM with the given prompt (conceptual implementation)"""
# In a real implementation, this would call the actual LLM API
# For demonstration, returning a mock response
mock_response = {
"task_decomposition": [
"locate_target_object",
"navigate_to_object",
"identify_grasp_point",
"execute_grasp",
"lift_object"
],
"required_vision_processing": True,
"navigation_required": True,
"manipulation_required": True,
"estimated_complexity": "medium"
}
return json.dumps(mock_response)
def process_pending_tasks(self):
"""Process any pending tasks in the queue"""
with self.task_lock:
if self.current_task is None:
return
task = self.current_task
self.current_task = None # Clear for next task
# Execute the task sequence
self.execute_task_sequence(task)
def execute_task_sequence(self, task):
"""Execute the sequence of actions for the given task"""
command = task['command']
actions = task['actions']
self.get_logger().info(f'Executing task: {command}')
self.get_logger().info(f'Action sequence: {actions}')
for i, action in enumerate(actions):
self.get_logger().info(f'Executing action {i+1}/{len(actions)}: {action}')
# Execute each action
success = self.execute_single_action(action, task)
if not success:
self.get_logger().error(f'Action failed: {action}')
# Could implement recovery strategies here
break
# Small delay between actions for safety
time.sleep(0.1)
self.get_logger().info('Task execution completed')
def execute_single_action(self, action, task_context):
"""Execute a single action in the sequence"""
try:
if action == "locate_target_object":
return self.locate_target_object(task_context)
elif action == "navigate_to_object":
return self.navigate_to_object(task_context)
elif action == "identify_grasp_point":
return self.identify_grasp_point(task_context)
elif action == "execute_grasp":
return self.execute_grasp(task_context)
elif action == "lift_object":
return self.lift_object(task_context)
elif action == "navigate_to_disposal_area":
return self.navigate_to_disposal_area(task_context)
elif action == "release_object":
return self.release_object(task_context)
else:
# Generic action handler
return self.handle_generic_action(action, task_context)
except Exception as e:
self.get_logger().error(f'Error executing action {action}: {str(e)}')
return False
def locate_target_object(self, task_context):
"""Locate the target object using vision system"""
if not task_context.get('requires_vision', False):
self.get_logger().info('Skipping vision processing - not required for this task')
return True
# Trigger vision processing to locate objects
# In practice, this would interface with Isaac ROS detection
self.get_logger().info('Locating target object using vision system...')
# Wait for vision results or timeout
timeout = time.time() + 5.0 # 5 second timeout
while time.time() < timeout:
if hasattr(self, 'last_vision_results') and self.last_vision_results:
# Process vision results
self.get_logger().info('Target object located')
return True
time.sleep(0.1)
self.get_logger().error('Timeout waiting for vision results')
return False
def navigate_to_object(self, task_context):
"""Navigate to the located object"""
if not task_context.get('requires_navigation', False):
self.get_logger().info('Skipping navigation - not required for this task')
return True
# Create and publish navigation goal
goal_pose = PoseStamped()
goal_pose.header.stamp = self.get_clock().now().to_msg()
goal_pose.header.frame_id = 'map'
# In a real implementation, this would use the actual object location
# For demo, using a fixed location
goal_pose.pose.position.x = 1.0
goal_pose.pose.position.y = 1.0
goal_pose.pose.position.z = 0.0
goal_pose.pose.orientation.w = 1.0
self.navigation_cmd_pub.publish(goal_pose)
self.get_logger().info('Published navigation goal')
# Wait for navigation to complete or timeout
return self.wait_for_navigation_completion(30.0) # 30 second timeout
def identify_grasp_point(self, task_context):
"""Identify appropriate grasp point for the object"""
# This would interface with Isaac ROS manipulation components
self.get_logger().info('Identifying grasp point...')
# For demo, returning success
return True
def execute_grasp(self, task_context):
"""Execute grasp action using manipulation system"""
if not task_context.get('requires_manipulation', False):
self.get_logger().info('Skipping manipulation - not required for this task')
return True
# Publish grasp command
grasp_cmd = String()
grasp_cmd.data = "execute_grasp"
self.manipulation_cmd_pub.publish(grasp_cmd)
self.get_logger().info('Published grasp command')
# Wait for grasp completion
return self.wait_for_manipulation_completion(10.0) # 10 second timeout
def lift_object(self, task_context):
"""Lift the grasped object"""
if not task_context.get('requires_manipulation', False):
self.get_logger().info('Skipping manipulation - not required for this task')
return True
# Publish lift command
lift_cmd = String()
lift_cmd.data = "lift_object"
self.manipulation_cmd_pub.publish(lift_cmd)
self.get_logger().info('Published lift command')
# Wait for lift completion
return self.wait_for_manipulation_completion(10.0)
def wait_for_navigation_completion(self, timeout):
"""Wait for navigation to complete (simplified implementation)"""
# In a real implementation, this would monitor navigation status
# For demo, just wait for a fixed time
time.sleep(2.0)
return True
def wait_for_manipulation_completion(self, timeout):
"""Wait for manipulation to complete (simplified implementation)"""
# In a real implementation, this would monitor manipulation status
# For demo, just wait for a fixed time
time.sleep(2.0)
return True
def handle_generic_action(self, action, task_context):
"""Handle a generic action that doesn't match specific handlers"""
self.get_logger().info(f'Handling generic action: {action}')
# Publish generic action command
cmd = String()
cmd.data = action
self.action_cmd_pub.publish(cmd)
return True
def main(args=None):
rclpy.init(args=args)
node = VLAPipelineNode()
try:
rclpy.spin(node)
except KeyboardInterrupt:
pass
finally:
node.destroy_node()
rclpy.shutdown()
if __name__ == '__main__':
main()
Isaac Sim Integration for VLA Testing
Isaac Sim Environment Configuration
# isaac_sim_vla_env.py
import omni
from omni.isaac.core import World
from omni.isaac.core.utils.stage import add_reference_to_stage
from omni.isaac.core.utils.prims import get_prim_at_path
from omni.isaac.core.objects import DynamicCuboid
from omni.isaac.core.materials import OmniPBRMaterial
from omni.isaac.range_sensor import _range_sensor
import numpy as np
class VLATestEnvironment:
def __init__(self):
# Initialize Isaac Sim world
self.world = World(stage_units_in_meters=1.0)
# Setup parameters
self.robot_usd_path = "/path/to/humanoid_robot.usd"
self.robot_prim_path = "/World/HumanoidRobot"
# Objects for VLA testing
self.test_objects = [
{"name": "red_cube", "color": (1.0, 0.0, 0.0), "size": (0.1, 0.1, 0.1), "position": (1.0, 1.0, 0.1)},
{"name": "blue_sphere", "color": (0.0, 0.0, 1.0), "size": (0.1, 0.1, 0.1), "position": (1.5, 1.0, 0.1)},
{"name": "green_cylinder", "color": (0.0, 1.0, 0.0), "size": (0.1, 0.1, 0.2), "position": (1.2, 1.5, 0.1)}
]
def setup_environment(self):
"""Set up the Isaac Sim environment for VLA testing"""
# Add robot to stage
add_reference_to_stage(
usd_path=self.robot_usd_path,
prim_path=self.robot_prim_path
)
# Set robot initial position
robot_prim = get_prim_at_path(self.robot_prim_path)
robot_prim.GetAttribute("xformOp:translate").Set((0.0, 0.0, 0.8))
# Add test objects to environment
for obj_data in self.test_objects:
if "cube" in obj_data["name"]:
# Add cube object
self.world.scene.add(
DynamicCuboid(
prim_path=f"/World/{obj_data['name']}",
name=obj_data["name"],
position=obj_data["position"],
size=obj_data["size"][0], # Cube size
color=np.array(obj_data["color"])
)
)
elif "sphere" in obj_data["name"]:
# Add sphere object (would use different primitive in Isaac Sim)
self.add_sphere_object(obj_data)
# Add lighting
self.setup_lighting()
# Add camera for vision system
self.setup_camera_system()
self.get_logger().info('VLA test environment set up successfully')
def add_sphere_object(self, obj_data):
"""Add a sphere object to the environment"""
# In Isaac Sim, you would use a different primitive for spheres
# This is a conceptual example
from omni.isaac.core.prims import GeometryPrim
from pxr import UsdGeom
sphere_prim = GeometryPrim(
prim_path=f"/World/{obj_data['name']}",
name=obj_data["name"],
position=obj_data["position"],
prim_type="Sphere"
)
# Set sphere properties
sphere_geom = UsdGeom.Sphere(sphere_prim.prim)
sphere_geom.CreateRadiusAttr(obj_data["size"][0] / 2.0)
def setup_lighting(self):
"""Set up lighting for the environment"""
from omni.isaac.core.utils.prims import define_prim
from pxr import UsdLux
# Add dome light
dome_light_path = "/World/DomeLight"
define_prim(dome_light_path, "DomeLight")
dome_light = UsdLux.DomeLight.Define(self.world.stage, dome_light_path)
dome_light.CreateIntensityAttr(3000.0)
# Add directional light (sun)
sun_light_path = "/World/SunLight"
define_prim(sun_light_path, "DistantLight")
sun_light = UsdLux.DistantLight.Define(self.world.stage, sun_light_path)
sun_light.CreateIntensityAttr(1500.0)
sun_light.CreateColorAttr((1.0, 0.98, 0.9))
def setup_camera_system(self):
"""Set up camera system for vision processing"""
from omni.isaac.sensor import Camera
# Create RGB camera
self.rgb_camera = Camera(
prim_path="/World/Camera",
frequency=30, # 30 Hz
resolution=(640, 480)
)
# Position camera on robot
self.rgb_camera.set_world_pose(position=np.array([0.1, 0.0, 1.6]), orientation=np.array([0.0, 0.0, 0.0, 1.0]))
def run_vla_test(self):
"""Run a complete VLA test cycle"""
self.world.reset()
# Run simulation for a number of steps
for i in range(1000): # Run for 1000 simulation steps
self.world.step(render=True)
# At certain intervals, trigger VLA processing
if i % 100 == 0: # Every 100 steps
self.trigger_vla_processing()
def trigger_vla_processing(self):
"""Trigger VLA processing cycle"""
# This would typically publish messages to ROS topics
# that the VLA pipeline node subscribes to
self.get_logger().info('Triggering VLA processing cycle')
def get_logger(self):
"""Get logger instance"""
return self.world._world_logger
def main():
env = VLATestEnvironment()
env.setup_environment()
env.run_vla_test()
if __name__ == "__main__":
main()
Performance Optimization for VLA Systems
Multi-Modal Fusion Optimization
# vla_pipeline/performance_optimizer.py
import rclpy
from rclpy.node import Node
from std_msgs.msg import Float32
import time
import statistics
class VLAPerformanceOptimizer(Node):
def __init__(self):
super().__init__('vla_performance_optimizer')
# Performance monitoring publishers
self.voice_latency_pub = self.create_publisher(Float32, '/performance/voice_latency', 10)
self.llm_latency_pub = self.create_publisher(Float32, '/performance/llm_latency', 10)
self.vision_latency_pub = self.create_publisher(Float32, '/performance/vision_latency', 10)
self.action_latency_pub = self.create_publisher(Float32, '/performance/action_latency', 10)
self.total_throughput_pub = self.create_publisher(Float32, '/performance/total_throughput', 10)
# Performance metrics storage
self.voice_latencies = []
self.llm_latencies = []
self.vision_latencies = []
self.action_latencies = []
# Adaptive processing parameters
self.voice_processing_rate = 10.0 # Hz
self.llm_processing_rate = 5.0 # Hz (LLM calls are expensive)
self.vision_processing_rate = 15.0 # Hz
self.action_processing_rate = 30.0 # Hz
# Timers for performance reporting
self.performance_report_timer = self.create_timer(1.0, self.report_performance_metrics)
self.get_logger().info('VLA Performance Optimizer initialized')
def measure_component_latency(self, component_name, func, *args, **kwargs):
"""Measure latency of a component function"""
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
latency = end_time - start_time
# Store latency for statistics
if component_name == "voice":
self.voice_latencies.append(latency)
if len(self.voice_latencies) > 100: # Keep last 100 measurements
self.voice_latencies.pop(0)
self.voice_latency_pub.publish(Float32(data=latency))
elif component_name == "llm":
self.llm_latencies.append(latency)
if len(self.llm_latencies) > 100:
self.llm_latencies.pop(0)
self.llm_latency_pub.publish(Float32(data=latency))
elif component_name == "vision":
self.vision_latencies.append(latency)
if len(self.vision_latencies) > 100:
self.vision_latencies.pop(0)
self.vision_latency_pub.publish(Float32(data=latency))
elif component_name == "action":
self.action_latencies.append(latency)
if len(self.action_latencies) > 100:
self.action_latencies.pop(0)
self.action_latency_pub.publish(Float32(data=latency))
return result
def report_performance_metrics(self):
"""Report performance metrics and adjust parameters if needed"""
if self.voice_latencies:
avg_voice_latency = statistics.mean(self.voice_latencies)
std_voice_latency = statistics.stdev(self.voice_latencies) if len(self.voice_latencies) > 1 else 0.0
self.get_logger().info(f'Voice Processing - Avg: {avg_voice_latency:.3f}s, Std: {std_voice_latency:.3f}s')
if self.llm_latencies:
avg_llm_latency = statistics.mean(self.llm_latencies)
std_llm_latency = statistics.stdev(self.llm_latencies) if len(self.llm_latencies) > 1 else 0.0
self.get_logger().info(f'LLM Processing - Avg: {avg_llm_latency:.3f}s, Std: {std_llm_latency:.3f}s')
# Adjust LLM processing rate based on performance
if avg_llm_latency > 2.0: # If LLM is taking too long
self.llm_processing_rate = max(1.0, self.llm_processing_rate * 0.8) # Slow down
self.get_logger().warn(f'Adjusted LLM processing rate to {self.llm_processing_rate:.2f} Hz due to high latency')
elif avg_llm_latency < 0.5 and len(self.llm_latencies) > 10: # If consistently fast
self.llm_processing_rate = min(10.0, self.llm_processing_rate * 1.1) # Speed up slightly
self.get_logger().info(f'Adjusted LLM processing rate to {self.llm_processing_rate:.2f} Hz')
if self.vision_latencies:
avg_vision_latency = statistics.mean(self.vision_latencies)
std_vision_latency = statistics.stdev(self.vision_latencies) if len(self.vision_latencies) > 1 else 0.0
self.get_logger().info(f'Vision Processing - Avg: {avg_vision_latency:.3f}s, Std: {std_vision_latency:.3f}s')
if self.action_latencies:
avg_action_latency = statistics.mean(self.action_latencies)
std_action_latency = statistics.stdev(self.action_latencies) if len(self.action_latencies) > 1 else 0.0
self.get_logger().info(f'Action Execution - Avg: {avg_action_latency:.3f}s, Std: {std_action_latency:.3f}s')
# Calculate and report throughput
total_completed_tasks = len(self.action_latencies[-10:]) # Last 10 seconds worth
throughput = Float32()
throughput.data = total_completed_tasks / 10.0 # Tasks per second
self.total_throughput_pub.publish(throughput)
def adaptive_resource_allocation(self):
"""Adaptively allocate resources based on performance needs"""
# This would implement more sophisticated resource allocation
# based on current system load and performance requirements
pass
Launch File for Complete VLA Pipeline
<!-- launch/vla_complete_pipeline.launch.py -->
from launch import LaunchDescription
from launch.actions import DeclareLaunchArgument, IncludeLaunchDescription
from launch.conditions import IfCondition
from launch.launch_description_sources import PythonLaunchDescriptionSource
from launch.substitutions import LaunchConfiguration, PathJoinSubstitution
from launch_ros.actions import ComposableNodeContainer
from launch_ros.descriptions import ComposableNode
from ament_index_python.packages import get_package_share_directory
def generate_launch_description():
# Declare launch arguments
namespace_arg = DeclareLaunchArgument(
'namespace',
default_value='',
description='Namespace for the nodes'
)
enable_visualization_arg = DeclareLaunchArgument(
'enable_visualization',
default_value='true',
description='Whether to enable RViz visualization'
)
# Get launch configurations
namespace = LaunchConfiguration('namespace')
enable_visualization = LaunchConfiguration('enable_visualization')
# VLA Pipeline Container
vla_pipeline_container = ComposableNodeContainer(
name='vla_pipeline_container',
namespace=namespace,
package='rclcpp_components',
executable='component_container_mt',
composable_node_descriptions=[
# Whisper voice processing node
ComposableNode(
package='isaac_ros_whisper',
plugin='nvidia::isaac_ros::whisper::WhisperNode',
name='whisper_node',
parameters=[{
'model_name': 'base.en',
'sampling_rate': 16000,
'enable_profiling': False
}],
remappings=[
('/audio_input', '/microphone/audio_raw'),
('/transcription', '/vla/voice_transcription'),
]
),
# LLM cognitive planner node
ComposableNode(
package='isaac_ros_vla',
plugin='nvidia::isaac_ros::vla::CognitivePlannerNode',
name='cognitive_planner_node',
parameters=[{
'llm_model': 'gpt-4-turbo',
'temperature': 0.3,
'max_tokens': 500,
'enable_profiling': True
}],
remappings=[
('/vla/command', '/vla/voice_transcription'),
('/vla/action_sequence', '/vla/planned_actions'),
]
),
# Isaac ROS Visual Slam for localization
ComposableNode(
package='isaac_ros_visual_slam',
plugin='nvidia::isaac_ros::visual_slam::VisualSlamNode',
name='visual_slam_node',
parameters=[{
'enable_occupancy_map': True,
'occupancy_map_resolution': 0.05,
'enable_image_transfer': True,
'enable_localization_n_mapping': True,
'enable_loop_closure': True,
}],
remappings=[
('/visual_slam/imu', '/imu/data'),
('/visual_slam/feature_tracks', 'feature_tracker/feature_tracks'),
('/visual_slam/optimized_odometry', 'visual_slam/optimized_odometry'),
]
),
# Isaac ROS Detection for object recognition
ComposableNode(
package='isaac_ros_detectnet',
plugin='nvidia::isaac_ros::detectnet::DetectNetNode',
name='detectnet_node',
parameters=[{
'model_name': 'ssd_mobilenet_v2_coco',
'confidence_threshold': 0.7,
'enable_profiling': False
}],
remappings=[
('/image', '/camera/color/image_rect_color'),
('/camera_info', '/camera/color/camera_info'),
('/detections', '/vla/object_detections'),
]
),
# VLA pipeline orchestrator
ComposableNode(
package='isaac_ros_vla',
plugin='nvidia::isaac_ros::vla::VLAPipelineNode',
name='vla_pipeline_node',
parameters=[PathJoinSubstitution([
get_package_share_directory('isaac_ros_vla'),
'config',
'vla_pipeline_config.yaml'
])],
remappings=[
('/vla/planned_actions', '/vla/planned_actions'),
('/vla/object_detections', '/vla/object_detections'),
('/action_command', '/robot/action_command'),
('/navigation_goal', '/navigation/goal'),
('/manipulation_command', '/manipulation/command'),
]
)
],
output='screen'
)
# Include Nav2 bringup
nav2_bringup_launch = IncludeLaunchDescription(
PythonLaunchDescriptionSource([
get_package_share_directory('nav2_bringup'),
'/launch/navigation_launch.py'
]),
launch_arguments={
'use_sim_time': 'true',
'params_file': PathJoinSubstitution([
get_package_share_directory('isaac_ros_vla'),
'config',
'nav2_config.yaml'
])
}.items()
)
# Conditional RViz launch
rviz_launch = IncludeLaunchDescription(
PythonLaunchDescriptionSource([
get_package_share_directory('isaac_ros_vla'),
'/launch/rviz.launch.py'
]),
condition=IfCondition(enable_visualization)
)
return LaunchDescription([
namespace_arg,
enable_visualization_arg,
vla_pipeline_container,
nav2_bringup_launch,
rviz_launch
])
Hands-On Exercise
- Implement the complete VLA pipeline using the components described
- Integrate with Isaac Sim for testing in a simulated environment
- Test with various voice commands and evaluate system response
- Measure performance metrics and optimize the pipeline
- Validate the system's ability to execute complex VLA tasks
Example commands to run the complete VLA pipeline:
# Build the workspace
cd isaac_ros_ws
colcon build --packages-select isaac_ros_vla
source install/setup.bash
# Launch the complete VLA pipeline
ros2 launch isaac_ros_vla vla_complete_pipeline.launch.py
# Send a voice command simulation
ros2 topic pub /audio_input audio_common_msgs/msg/AudioData "data: [0, 1, 2, ...]" # Actual audio data
# Or send a text command directly for testing
ros2 topic pub /vla/voice_transcription std_msgs/msg/String "data: 'pick up the red cube'"
Troubleshooting Common VLA Issues
Performance Issues
- High Latency: Check GPU utilization, reduce processing rates for expensive components
- Low Throughput: Optimize component latencies, consider parallel processing
- Memory Exhaustion: Monitor GPU memory, optimize data transfers
Integration Issues
- Synchronization: Ensure proper timing between vision, LLM, and action components
- Coordinate Frames: Verify TF trees are properly established between components
- Data Formats: Confirm message formats match between components
Summary
This lesson covered building a complete VLA pipeline for humanoid robots. You learned to integrate voice processing, LLM reasoning, computer vision, and robot control into a unified system. The next lesson will explore the capstone project and future directions.